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Abstract

Self-assembly systems are central to a broad range of critical biological processes. Developing methods for quanti-

tative simulation of self-assembly dynamics on cellular scales is therefore an essential sub-step in the broader goal of

building predictive models of cellular function. Yet several aspects of self-assembly systems challenge key assumptions

of conventional methods for biochemical simulation. Innovations are thus required in the rapid, quantitative simulation

of self-assembly on cellular scales. In this paper, we describe a novel discrete-event queuing strategy for time- and mem-

ory-efficient quantitative simulation of self-assembly systems in continuous time. The method will typically allow sim-

ulation of interactions of even large, complex assembly structures in space and amortized run time per time step linear

in system size. It can therefore be expected to extend the applicability of quantitative discrete-event methods to biolog-

ically important systems and scales inaccessible to prior techniques. In addition to presenting the method, we provide

empirical evidence for its efficiency on two model systems.
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1. Introduction

Self-assembly systems play crucial roles in numerous cellular functions (see, for example [18].) These sys-

tems include relatively small heterocomplexes such as the ribosome, regular structures of hundreds of

proteins such as viral capsids, or much larger structures such as microtubules. Self-assembly is an essential

step in such biological processes as DNA replication and transcription; protein translation, degradation,
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and transport; and cell movement and shape control. Properly modeling the quantitative behavior of self-

assembly systems is therefore essential to the broader goal of building predictive models of overall cell

behavior. Self-assembly systems are also implicated in various pathological conditions, such as viral infec-

tion. Viral capsids – enclosures of typically several hundred proteins that protect the viral genome – are

particularly impressive examples of how nature can produce complex but regular structures at extremely
high rates and fidelity in difficult environments. Self-assembly has also emerged as a promising technology

for nanometer-scale fabrication [17]. This fact provides even greater impetus to understand the self-assem-

bly systems found in nature, which are far more sophisticated than anything human engineers can currently

construct, and to develop simulation tools that can be used for rapid in silico prototyping of hypothetical

engineered systems.

Despite the tremendous value that predictive, quantitative models of self-assembly behavior would have,

existing simulation techniques poorly model their behavior in the cellular environment. The number of

assembly intermediates (partially formed structures) is frequently exponential in the number of monomers
in a complete assembly, making the differential equation models commonly used for biochemical simulation

intractable for non-trivial systems without substantial simplifications. Furthermore, the large number of

intermediates means that most intermediates are unpopulated at any given time in a cell-scale system, also

compromising the accuracy of continuous models on small scales. Discrete models avoid the problem of

having to maintain concentrations for all possible intermediates, but can quickly become bogged down

by the large number of individual proteins that can be found in even a cell-scale system. Improvements

in biochemical simulation methods are therefore needed to make quantitative self-assembly simulation trac-

table at cellular scales.
Aspects of this problem have been explored by several largely disjoint bodies of research. Much practical

work in the biological literature has focused on icosahedral virus capsid assembly, due to its practical

importance, its relative complexity, and its familiarity and tractability to experimentalists. Icosahedral virus

capsids are computationally among the most challenging self-assembly systems because their relatively

large sizes (typically several hundred proteins per capsid and possibly hundreds or thousands of capsids

in an infected cell) and their relatively unconstrained growth patterns make them unusually difficult to

model by conventional methods. The difficulties they pose for existing modeling methods, however, also

make them an ideal model system for research on simulation methods for cellular biochemistry. Many sim-
ulation techniques have been applied to this system, including non-quantitative discrete-event models of

varying levels of detail [1,2,11,15], simplified differential equation models [5,19,20], and detailed Brownian

dynamics-like methods [10,13,14]. All of these techniques have limitations, though, either in the degree of

simplification they require or in the range of systems they can model. In particular, none is well suited for

quantitative simulations of virus-sized systems on the scale of tens of thousands of monomers required to

simulate a single infected cell.

In the chemical engineering community, such molecular reaction systems are commonly modeled by a

technique called the N-fold way [3,7]. The N-fold way depends on the fact that by neglecting consider-
ation of explicit space in the model, waiting times between individual molecular reaction events can be

modeled as exponentially distributed random variables. Various properties of these variables then allow

substantial simplifications in sampling event times. In an N-fold way simulation, one repeatedly samples

waiting times for all possible events, chooses the one with minimum time, and updates system state

accordingly. For a system of n monomers and m distinct structures, an N-fold way simulation requires

time O(m2f(n)) per simulation step, where f(n) is the time to sample possible events between two struc-

tures. Recent work has improved on the classic N-fold way methods for particular use with assembly

systems, reducing run time to O(mf(n)) at the cost of raising memory usage to O(m2) [8,9]. These quad-
ratic dependencies, in either time or memory, mean that the method in either form will be difficult to

apply to complicated systems with large numbers of geometrically distinct intermediate structures on

the scales typical of a cellular system.
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Mathematically equivalent systems are also familiar to the computer science literature, although for very

different applications. This particular representation, in which a system transitions between discrete states

with exponential waiting times between states, is an example of a continuous-time Markov model (CTMM)

(see, for example [12]). These models are extensively used in computer system modeling among other areas

and there is thus a great deal of theoretical work in the computer science literature on their behavior and
simulation. The time evolution of such systems is described by a series of differential equations known as

the Kolmogorov equations, which can be analytically solved or numerically integrated for many simple sys-

tems. For more complicated systems, particularly those in which the state set is too large to enumerate

explicitly, it may not be possible to find analytical solutions or feasible to perform numerical integration

of state distributions over time. Simulation may thus be necessary to understand model behavior.

The purpose of the present work is to extend the applicability of these quantitative discrete event models

to yield more efficient simulations of computationally challenging biological self-assembly systems on cel-

lular scales. We aim to do this by uniting disparate contributions from the various fields that have explored
similar discrete-event models. Our problems are motivated by cell-scale biology and specifically by biolog-

ical systems such as virus capsids that are especially challenging to existing computational methods. Our

models are essentially identical to those used in the chemical engineering N-fold way method. Our compu-

tational strategies draw on standard techniques from the computer science literature for efficient simula-

tion, particularly of CTMMs. The remainder of this paper describes and analyzes our technique and

presents empirical results. We first describe a representation of generic self-assembly systems as a CTMM

(an N-fold way model). We then develop a queue-based simulation strategy for fast, memory-efficient sim-

ulation of complex self-assembly systems using this N-fold way model. Finally, we provide empirical
evidence for the efficiency and correctness of these methods on two simple model systems.
2. Methods

2.1. Computational model

We first define some basic terminology for describing our model of self-assembly systems. The basic
building blocks of an assembly system are subunits, which generally correspond to individual proteins in

a biological assembly system. A subunit has a collection of binding sites, each of which has some propensity

for binding to any other binding site. The process of pairwise interaction between two binding sites is called

a binding interaction. Connected components of subunits joined by bonds form an assembly. The current

state of any simulation is then defined by the set of assemblies it contains. These objects are illustrated

in Fig. 1. We assume below that our system contains n subunits comprising m distinct assemblies.

The collective potential binding interactions among all distinct types of binding sites are captured by a

binding matrix. Element Bij of the binding matrix corresponds to the binding affinity of binding site type i
for binding site type j. These affinities are expressed as parameters of an exponential distribution describing

the waiting time between binding events for two isolated subunits. The matrix is therefore symmetric. Sim-

ilarly, an unbinding matrix describes waiting times for breaking any given bond type. These can also be

characterized as parameters of exponential waiting time distributions. These concepts are illustrated in

Fig. 2. For certain kinds of assemblies, a given pair of binding sites may need two distinct binding values:

one corresponding to binding times when the binding sites are fixed in space relative to one another by

other binding interactions and the other corresponding to binding times when the two binding sites are

on assemblies freely moving relative to one another in the simulation space. Fig. 3 illustrates the distinction.
This split of values is required because the entropy, and thus free energy, of binding is substantially lower

when two binding sites are forced into the correct relative positions to one another for binding, which

would be expected to reduce the time to bind. Note that the model would never require more than two such



Fig. 1. Illustration of the components of an assembly simulation. (a) An assembly subunit with two binding sites; (b) an assembly

formed by four assembly subunits engaged in binding interactions to one another; (c) a simulation consisting of a number of

assemblies. Note that the discrete-event techniques examined here do not keep track of the positions of different assemblies in space,

only of the relative subunit positions within each assembly.

Fig. 2. Illustration of a binding matrix and the subunit binding patterns consistent with it. (a) A pair of subunits with binding sites.

Edges are labeled according to binding site types A, B, and C. (b) A binding matrix defining possible interactions among the three

binding site types and the relative rates of those interactions. (c) Pairings consistent with the matrix: a symmetric homodimer formed

by joining two A binding sites and an asymmetric homodimer formed by joining a B and a C binding site.

Fig. 3. Distinction between spatially fixed and unfixed binding interactions. (a) A pair of potential binding partners unfixed in space;

(b) potential binding partners fixed in space by other interactions.

F. Jamalyaria et al. / Journal of Computational Physics 204 (2005) 100–120 103
binding values per pair of binding sites, although more sophisticated models allowing for flexible binding

interactions might. Simulations then consist in the abstract of repeatedly forming or breaking binding inter-

actions, with the waiting time to the next event at any given time distributed according to the minimum of

the waiting times to all possible individual events, as in a standard N-fold way simulation.
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2.2. Algorithms

Our method implements an N-fold way simulation more efficiently by using an event queue to maintain

the possible next events at any given time. A simulation constructed in this manner proceeds through an

event loop in which we repeatedly pull the minimum-time event (that scheduled to occur nearest in the
future) off of the queue, update system time, implement whatever actions the event requires, and then sam-

ple a waiting time (the time until the event occurs) for each potential new event that might then become

possible.

The central issue in designing such a method is determining the queuing policy, which specifies when

we place events in the queue, which events we place there, and how we deal with events that preclude

others already in the queue. The first innovation of our method over prior work comes from the rec-

ognition that correctness of the method does not require storing times for all O(m2) possible pairwise or

single-assembly interactions; we need only guarantee that the next event for each assembly is stored in
the queue. Upon processing a next event, we need only sample new waiting times for the O(m) events

that involve subunits affected by the event just processed, analogous to what is done in the prior work

[8,9]. Unlike in that work, however, we only store the one minimum-time new event per affected assem-

bly in the queue, i.e. the unique event for each assembly that has the smallest waiting time. If no other

event interacts with those assemblies prior to their minimum-time events coming to the top of the

queue, then we can be sure that those events were not precluded and will appear with the correct

waiting time distributions.

A complication arises in handling the invalidation of pending events in the queue by other events
that reach the top of the queue first. The issue occurs because a reactant involved in some event could

be affected by other events that occur between the first event�s posting time (when it is placed on the

queue) and its activation time (when it is supposed to occur). For example, suppose our queue contains

an event indicating that assemblies A and B will bind at time t, but some other event produces an

assembly C which is selected to bind with B at time t � Dt. In that case, by the time we reach the

A/B binding event in the queue, that event will no longer be usable because B will have bound with

C. We solve this with a lazy evaluation strategy, in which each assembly maintains a valid time report-

ing the last time new events were sampled for it. Any event posted to the queue prior to the valid time
of one of its reactants is then invalid and does not modify the system state when it comes up. If an

invalid event was posted before the valid times of all of its reactants, then we can be sure that each

such substituent has already had some other events sampled for it. If the invalid event was posted after

the valid time of one of the reactants for which it was sampled, then that event serves as a place-holder

indicating that that reactant has not experienced any events between its valid time and the invalid

event�s activation time. The waiting time to that reactant�s next event must then be resampled when

the invalid event is processed.

The second innovation in our algorithm is a periodic requeuing operation used to maintain constant
queue size. Every O(m) steps of the algorithm, we delete the entire pending event queue and reinitialize

it as at the beginning of the algorithm. As we initialize the queue with only one event per assembly and

add only a constant number of events to the queue per event removed, this strategy guarantees queue size

remains O(m). Less obvious is that it has no asymptotic effect on amortized run-time of the method for

reasonable queue data structures. Note that requeuing requires O(m2) time to recompute possible next

events and, for any reasonable queuing method, o(m2) time to place O(m) of these events in the queue.

Thus, the amortized cost of requeuing is O(m) per step, adding no asymptotic increase over the existing

O(m) sampling cost per step.
Fig. 4 provides pseudocode for the resulting queue-based algorithm with O(m) requeuing. Queuing pol-

icy in the figure is described in terms of the ValidTime of each assembly (when its events were last resam-

pled, invalidating its previous events), the PostTime of each event (when it was placed in the queue), and the



Fig. 4. Pseudocode for our queue-based algorithm self-assembly simulation with requeuing in the assembly centered variant of the

algorithm. Initialize() encodes the queue initialization used when first starting and when requeuing simulations. Simulate() runs the

overall simulation for a time tmax. We focus here on the issues of queuing events and establishing their validity, omitting details on

sampling event times.
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ActiveTime of each event (when it is set to occur). It also occasionally depends on the Parent of an event,

defined as the assemblies whose minimum event time distributions were sampled to yield the event in ques-
tion. Collectively, our innovations give a significant advantage for complex assembly systems having large

numbers of distinct intermediates. They allow us to keep the O(m) space complexity of the classic N-fold

way method and get the O(m) per-step time complexity of the recent innovations by Laurenzi et al. [8,9].
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These performance improvements are, however, conditional on the frequency with which events are inval-

idated by the queuing method, an issue examined in depth below.

We can illustrate the method with a simple example, shown in Table 1. Suppose we examine a dimer

system made up of three subunits, A, B, and C, where each one can bind to either of the other two. We

can walk through a few possible steps of the algorithm for this system:

(1) We initialize the queue by sampling times for all possible events. There are initially three possible

events: A + B ! AB, B + C! BC, and A + C! AC. Suppose our random sampling gives event acti-

vation times of t = 1 for A + B ! AB, t = 2 for B + C! BC, and t = 3 for A + C! AC. Then we

must place the minimum time event for each assembly in the queue. For both A and B, the minimum

time event is A + B ! AB at t = 1. For C, it is B + C! BC at t = 2. We therefore initially fill our

queue with A + B ! AB and B + C! BC.

(2) To take the first step of the simulation, we then extract the minimum time event from the queue,
A + B ! AB at t = 1, and implement that event. Our current state is then an AB dimer and free mono-

mer C at time t = 1. We then sample among possible events for the new AB dimer. There is only one

such event: AB ! A + B. We will suppose this event is sampled with waiting time 2, which, added to

the current time of 1, gives the new event an activation time of 3. This is the only event sampled, so it is

added to the queue.

(3) We again extract the minimum time event from the queue: B + C ! BC at t = 2. This event is invalid

for B because the event was sampled at time 0 but B was last modified at time 1. We therefore discard

the event without implementing it. The event is valid for C, so we must sample new possible events for
C. Because C has no binding partners available, though, there are no possible new events for C and we

add nothing to the queue. We do, however, update the system time to that of the discarded invalid

event, t = 2.

(4) We now extract the minimum time event: AB ! A + B at time 3. The event is valid for AB so we break

AB into A and B and update the system time to 3. We must then sample possible next events for A and

B. Suppose we now choose times t = 7 for A + B ! AB, t = 4 for B + C! BC, and t = 5 for

A + C ! AC. Then B + C ! BC is the minimum time event for B and A + C ! AC is the minimum

time event for A, so we place those two events in the queue to prepare the system for the next step.
Table 1

Illustration of a possible series of steps of the queuing algorithm on a simple heterodimer system of three monomers

Time System state Events sampled Resulting queue

0 A A + B! AB (t = 1) A + B ! AB (t = 1)

B B + C! BC (t = 2) B + C! BC (t = 2)

C A + C! AC (t = 3)

1 AB AB! A + B (t = 3) B + C! BC (t = 2)

C AB! A + B (t = 3)

2 AB none AB! A + B (t = 3)

C

3 A A + B! AB (t = 7) B + C! BC (t = 4)

B B + C! BC (t = 4) A + C! AC (t = 5)

C A + C! AC (t = 5)

Each row describes the system at a particular point in time, the events sampled at that time, and the state of the queue following the

sampling.
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We could continue this process indefinitely, periodically emptying the queue and reinitializing it by

considering all possible events from the current state.

2.3. Theoretical analysis

In this section, we analyze our methods theoretically. We first seek to establish the correctness of the

methods by showing that event distributions yielded by our queue-based method are described by the same

CTMM as that describing a classic queue-less N-fold way simulation of the same assembly system. Second,

we examine the memory and run-time efficiency of the methods. For simplicity, we assume that the only

event types are binding and unbinding events. We thus neglect single-molecule events, such as conforma-

tional shifts that may change subunit binding characteristics. Accounting for such events would not

negatively impact any of the theoretical results we present below.

We first note an important property of exponential distributions, the ‘‘memory-less property’’, that al-
lows us both to perform the ‘‘resampling’’ operation that is the basis of much of our algorithm and to use

events pending in the queue. Suppose we examine our queue at some time t and we are interested in some

potential next event e with exponentially distributed waiting time w that was sampled at time u < t but is

observed not to have have occurred yet as of time t. The memory-less property of exponential random

variables tells us the following:
Fig. 5.

some o

states
Prfw ¼ t þ sjw > tg ¼ Prfw ¼ sg ¼ Prfw ¼ uþ sjw > ug ð1Þ

Informally, this means that if we have observed a pending event at time t that was originally sampled

from an exponential distribution and placed on the queue at time u < t, then its additional waiting time

after time t will be distributed identically to what it would be if we resampled it at time t from the same

exponential distribution. This is the key property of exponential random variables that makes both the clas-

sic N-fold way and our queuing algorithm possible.

We now first prove a basic proposition that says that we can add ‘‘null’’ states to a continuous-time Mar-

kov model that immediately transition back to the starting state without affecting the overall time progress

of the model. A null state q* is modeled as a state that is reached from some starting state q by a waiting
time exponentially distributed with parameter k* and then immediately returns with zero waiting time. The

idea of a null state is illustrated in Fig. 5. We wish to show that the distributions of waiting times by which

we leave state q to enter any non-null state are unaffected by the presence of the null state. This is estab-

lished by the following lemma:

Lemma 1. Assume we are given a CTMM M containing some state q with neighbors q1, . . . ,qk. Further

assume we construct a second CTMM M* from M by adding a ‘‘null state’’ q*. q transitions to q* with rate k*
and q* transitions only to q with infinite rate. For any qi 2 {q1, . . . ,qk}, the probability qi is the next non-null

state reached after q and the distribution of waiting times until qi is reached are the same for M as for M*.
Illustration of a subset of a CTMM containing a ‘‘null state’’ q
*
reachable from some state q. We assume q can transition to

ther set of states, q1, . . . ,qk, which each has some other set of potential transitions (not shown). Nodes correspond to distinct

of the CTMM. Edges are labeled with their rates, expressed as parameters of exponential distributions.
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Proof. Define exp(k) to be an exponentially distributed random variable with parameter k, k* to be the rate

of the q ! q* transition, and K to be the sum of the rates of all other transitions out of q. We now consider

the probability pi that our next non-null state is some qi with parameter ki. We can enter qi next either by

transitioning directly from q to qi or by transitioning some number of times from q to q* and then from q to

qi. These possibilities yield the following probabilities:
pi ¼
ki

Kþ k�
þ k�
Kþ k�

pi; ð2Þ

pi 1� k�
Kþ k�

� �
¼ ki

Kþ k�
; ð3Þ

pi
K

Kþ k�

� �
¼ ki

Kþ k�
; ð4Þ

pi ¼
ki
K
: ð5Þ
The probability of choosing qi directly from q in M is also ki/K, satisfying the first part of the lemma. Using

a similar argument, we can express the waiting time to enter any state other than q* as follows:
w ¼ expðKþ k�Þ þ
k�

Kþ k�
w; ð6Þ

w
K

Kþ k�

� �
¼ expðKþ k�Þ; ð7Þ

w ¼ Kþ k�
K

expðKþ k�Þ; ð8Þ

w ¼ expðKÞ; ð9Þ
exp(K) is also the waiting time to leave state q in M, satisfying the second part of the lemma. h

We require one more lemma to allow us to show correctness of our method. This lemma asserts an invar-

iant on our queue state that will allow us to argue that it models the same process as the classic N-fold way

method. We define an event to be valid for assembly X if the event�s posting time is not less than X�s valid
time. We can then state the following:

Lemma 2. For any possible next event ei with rate ki, either ei is present in the queue with waiting time

sampled from exp(ki) or there is some event ej with rate kj that is valid for each parent of ei and was chosen to

have a shorter waiting time than ei with probability equal to Pr{exp(kj) < exp(ki)}.
Proof. We establish this by structural induction on the system state over time. As the base case, we con-

sider the queue immediately after an initialization or reinitialization operation. At this time, all possible

events are sampled and the minimum-time event for each subunit X is stored in the queue. Suppose we

consider some arbitrary possible event ei. Then ei will be placed in the queue unless at least one other ej

for each of the subunits involved in ei is sampled to have shorter waiting time. Thus, if ei appears in the

queue it will have a waiting time distributed as exp(ki). If it does not appear in the queue, then some ej

sampled from exp(kj) must have been found to have a shorter waiting time with probability equal to

Pr{exp(kj) < exp(ki)}.
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For the inductive step, we must consider all the ways system state (the distributions of particles) or queue

state (the set of events and event times in the queue) can change by handling some event:

(1) valid unbinding event: In this case, one reactant, Z, is removed, eliminating possible events it

might have participated in and two products, X and Y, are created, enabling possible new events.
The algorithm invalidates any events referring to Z, converting them to ‘‘null’’ events and thus

leaving us with a Markov model that yields equivalent event-time distributions to one without

any Z events. The algorithm will sample minimum-time events for X and Y, guaranteeing that

any possible event referring to either either occurs in the queue, having been sampled correctly,

or is preceded by another correctly sampled event valid for the same parent that appears in the

queue.

(2) valid binding event: In this case two reactants, X and Y, are removed from the simulation, remov-

ing any possible events they might have been involved in, and one product Z is created, possibly
enabling new events. The algorithm will invalidate any events referring to X or Y, converting them

into ‘‘null’’ events that do not change event time distributions. It will also sample possible events

for Z and store the minimum-time event, guaranteeing that any new event created by the process-

ing of the current event is either in the queue with the correct sampling distribution or occurs after

another event valid for common parent Z that is in the queue and was sampled with its correct

distribution.

(3) invalid unbinding event: In this case, system state does not change. The unbinding event could not be

valid for it parent so its removal does not affect the validity of the lemma.
(4) invalid binding event that does not result in resampling: the system state does not change in this

case. The removed event could not be valid for its parent or else it would induce resampling.

Thus, if the lemma was valid for the queue prior to the removal of this event, it must be valid

after it.

(5) invalid binding event that results in resampling: The system state does not change in this case. The

invalid event is valid for its parent and invalid for its other reactants. After removal of the

event, the algorithm invalidates any existing events involving the parent, resamples all possible events

involving the parent and stores the one with minimum time in the queue. Thus, for any possible event
involving the parent, either the event is in the queue or another valid such event with lesser waiting

time is in the queue with correctly sampled waiting times.

Together, these cases consider all possible ways the system or queue state can change. Since the lemma is

true as of queue initialization and each possible update preserves its validity, the lemma is valid. h

The preceding arguments now allow us to establish our primary result on the correctness of the

method:

Theorem 1. From any system state, the queue method will select the next state with identical probability

distribution and identical waiting time distribution to a queue-less N-fold way simulation.
Proof. A queue-less N-fold way simulation selects the next state by sampling waiting times to all pos-

sible next states and choosing the minimum. By Lemma 2, the queue will contain a set of events (some
of them possibly null events) sampled from the correct exponential distributions such that at least one

event in the queue has time less than or equal to that of any event not in the queue. No non-null event

in the queue can encode any transition that is not possible given the current system state, since the

event would have been invalidated by the disappearance of any of its reactants. Thus, the minimum-

time event in the queue is distributed according to the minimum of the set of possible next events

and a set of null events. By Lemma 1, the probability distributions with which such a CTMM selects
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its next non-null state and waiting time to that state will be identical to those derived from a CTMM

lacking the null events. Thus, the queue-based simulator will implement a CTMM equivalent to one

that samples all possible next events of the system state and chooses the one with minimum waiting

time. The queue-less and queue-based methods thus yield CTMMs with equivalent probability distribu-

tions of next states and waiting time distributions and therefore implement identical models of the
physical process. h

Having established correctness of the method, we now seek to establish its efficiency in run-time and

memory usage. We can first show the following:

Theorem 2. Total memory usage is O(m).
Proof. Memory usage is dominated by the event queue and a constant amount of state per assembly. The

requeuing method bounds the queue size by O(m). There are O(m) assemblies, so O(m) storage is required to

maintain their state. Thus, total memory usage is O(m). h

We establish the run-time efficiency of the method in terms of the average time to compute possible

events between two assemblies, f(n), and a function v(n) equal to the inverse of the fraction of events that

are valid among those reaching the top of the queue.

Theorem 3. The average run time per discrete event is O(mf(n)v(n)).
Proof. On each event, our method does constant work to update state then samples new events for at most

two assemblies at cost O(mf(n)) each. Adding the amortized O(m) requeuing cost per step yields total cost
per event of O(mf(n)). However, since our simulation state advances only on valid events, we must consider

the true cost to be O(mf(n)v(n)) per discrete event. h

Thus, our method is superior to the classic N-fold way when v(n) = o(m). In no event can it give asymp-

totically worse performance than the classic method, since the first event after requeuing is guaranteed to be
valid. It is as efficient in run-time as the Laurenzi et al. method when v(n) = O(1). We now develop a poten-

tial function argument based on bounds on the queue size to show that v(n) is in fact O(1) for the important

special case of systems at equilibrium. To do this, we establish certain properties of binding and unbinding

events, and we then combine them with properties of equilibrium systems to prove a lower bound on 1/v(n).

We divide the events into five classes:

(1) valid unbinding event: an unbinding event valid for its parent,

(2) invalid unbinding events: an unbinding event not valid for its parent,
(3) valid binding events: a binding event valid for both of its reactants,

(4) fully invalid binding events: a binding event not valid for its parent or parents,

(5) semi-invalid binding events: a binding event that is valid for its parent but not for its other

reactant.

We now examine how each possible event type can affect the queue size. The possibilities are expressed in

the following lemma:

Lemma 3. The possible net change in queue size from processing any single event are as follows:

(1) valid unbinding: 0 or +1

(2) invalid unbinding: �1,
(3) valid binding: �1 or 0,

(4) fully invalid binding: �1.

(5) semi-invalid binding: �1 or 0.
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Proof. We consider each case separately:

(1) valid unbinding: The event�s product will be two subunits and the algorithm will enqueue at most two

new events, one for each subunit. The gain of one or two events and the loss of the one event removed

from the top of the queue give a net change of 0 or +1.

(2) invalid unbinding: The algorithm cannot sample for any subunits on an invalid unbinding event and it
will therefore not enqueue any new events. The loss of one event from the top of the queue coupled

with the gain of no events gives a net change of �1.

(3) valid binding: The product will be a single aggregate of the two involved subunits, for which the algo-

rithm will enqueue at most a single future event. The net change is therefore �1 or 0.

(4) fully invalid binding: The algorithm will not resample in this case and so will create no new events. The

net change is therefore �1.

(5) semi-invalid binding: The algorithm may sample events for either zero or one of the two binding part-

ners, creating zero or one new event. The net change is therefore 0 or �1. h
We will now use the preceding lemma to establish some restrictions on proportions of events falling into

the five event classes. We first define the following:

� tvu = the number of valid unbinding events since the last requeuing,
� tiu = the number of invalid unbinding events since the last requeuing,

� tvb = the number of valid binding events since the last requeuing,

� tib = the number of fully invalid binding events since the last requeuing,

� tsb = the number of semi-invalid binding events since the last requeuing,

� tv = tvu + tvb, the number of valid events since the last requeuing,

� ti = tiu + tib, the number of invalid events since the last requeuing not counting semi-invalid binding

events,

� t = the total number of events processed since the last requeuing neglecting semi-invalid binding events.

We will now bound the ratio of valid to fully invalid events, neglecting semi-invalid events for the

moment:

Lemma 4. If t > 3m then tv
tvþti

P 1
3
:

Proof. All invalid events other than semi-invalid binding events decrease the queue size by at least 1. Only

valid unbinding events can increase the queue size. The queue size is at most m at the time of requeuing and

cannot fall below zero. Therefore, if we examine the net decrease in queue size, Dq, we can conclude
ðtiu þ tibÞ � tvu 6 Dq 6 m; ð10Þ

tvu P ðtiu þ tibÞ � m; ð11Þ

tvu þ tvb P ðtiu þ tibÞ � m; ð12Þ

tv P ti � m ð13Þ
If tv + ti = km then tv P k�1
2
m.
tv
tv þ ti

¼ tv
km

� ðk � 1Þm=2
km

¼ k � 1

2k
: ð14Þ
For k > 3, tv
tvþti

P 1
3
. h



112 F. Jamalyaria et al. / Journal of Computational Physics 204 (2005) 100–120
The most difficult portion of the proof deals with the fact that sampling the waiting time to the next

valid or semi-invalid event requires sampling the minimum of several exponentials derived at different

times from different system states. We will show that the expected value of this waiting time is equal

to the expected value it would have if we assumed all of the variables were sampled simultaneously from

a single system state. We will show this by considering the expected time to the next valid or semi-invalid
event in terms of the expectation of the time if all events in the queue were sampled from the current state

plus the expectation of a series of ‘‘corrections’’ to that time to account for the prior system states from

which individual queue elements were sampled. We will then show that the expectation of these correc-

tions is zero.

For the purposes of this proof, assume that our queue was produced over the course of a particular tra-

jectory through the CTMM describing our system states. Assume we have a set of elements in the queue,

e1, . . . ,ek each sampled from the minimum of the distributions of possible next events for at least one assem-

bly capable of undergoing events at the current time. The oldest element in the queue was introduced while
the queue was in some state q1 and successive elements were introduced over the course of a series of states

q2, . . . ,qk � 1 with the system currently in state qk. We assume these states were encountered at times

t1, . . . ,tk. Define T to be the random variable describing what the time to the next event would be if all

events were sampled from state qk as in a standard N-fold way simulation. Whichever assembly or assem-

blies had their next event times sampled at qk � 1 may make slightly incorrect contributions to T because the

set of possible binding partners for them may have changed between time tk � 1 and time tk. We will define

the random variable expressing this error to be Dk � 1. Likewise, we can define a D1, . . . ,Dk � 2. These ran-

dom variables are likely to be dependent on both T and each other. Let s = T + D1 + � � � + Dk � 1 be the
random variable expressing the time to the next event. We will now show the following:

Lemma 5. The expectation of Di over all possible system trajectories and waiting time samples is zero for all i,

provided the system has reached its stationary distribution.
Proof. Consider a particular assembly i whose minimum time event is sampled at time ti from state qi

and then remains in the queue up through the current time tk. The probability of observing this trajectory

is pipik(tk � ti) where pi is the stationary probability of choosing state qi and pik(t) is the probability that

we transition from qi to qk over a time span t. By the detailed balance condition (a necessary property of
a CTMM that reaches a stationary distribution) pipik(tk � ti) = pkpki(tk � ti). Let si be the expected wait-

ing time for subunit i�s next event if sampled from state i and sk be its expected time if sampled from

state k. Then for each trajectory from i to k yielding a contribution of pipik(t)(si � sk) to the expecta-

tion of Di there is a contribution pkpik(t)(sk � si) from the opposite trajectory. Applying the fact that

the probabilities are equal, we conclude that these contributions cancel out, yielding an expectation of

zero for Di. h

We can then immediately conclude the following:

Corollary 1. The expectation over all possible system trajectories and event samples of s is equal to the

expectation of T provided the system has reached its stationary distribution.
Proof. By linearity of expectation
Ex½s� ¼Ex½T þ D1 þ � � � þ Dk�1�; ð15Þ

¼Ex½T � þ Ex½D1� þ � � � þ Ex½Dk�1�; ð16Þ

¼Ex½T � þ 0þ � � � þ 0; ð17Þ

¼Ex½T �: � ð18Þ



F. Jamalyaria et al. / Journal of Computational Physics 204 (2005) 100–120 113
The preceding proofs allow us to calculate the expected time to the next valid or semi-valid event by

assuming that all valid or semi-valid events pending in the queue were sampled from the current state of

the queue. We will use this fact to bound the expected waiting time until a valid or semi-valid event in terms

of the expected waiting time to a valid event. This is applied in the proof of the following:

Lemma 6. Consider a current system state qi. Let X be the random variable describing the minimum of the
times to all possible next events. Assume there are k assemblies available to participate in events at state q and

let Y1, . . . ,Yk be the random variables where Yj describes the minimum of the the waiting times to all possible

next events involving assembly j. Let Y be the minimum of the set {Y1, . . . ,Yk}. Then Ex[Y]P (1/2)Ex[X].
Proof. For any state qi with stationary probability pi, there is some set of possible next events with char-

acteristic rates k1, . . . ,kk. The time X to the next event is exponentially distributed with parameter

Ki = k1 + � � � + kk and thus has mean 1/Ki. The time Y to the next valid or semi-valid event if all events

in the queue were sampled from state qi is the minimum of a set of exponentials that includes all of

k1, . . . ,kk and possibly one additional copy of each, as an event involving assemblies j and l could be

counted once in sampling for Yj and once in sampling for Yl. No other events can be included in the dis-

tribution of Y and no event can be included more than twice as they can only be present if they are among

some Yi�s next events and can be contributed by at most two reactants. Y is thus exponential with param-
eter less than or equal to 2(k1 + � � � + kk) = 2Ki. Its expected waiting time is thus at least 1/2Ki. Summing

over all possible system states j, the expected waiting time until the next valid event, E[X], is
P

j pj/Kj

and the expected waiting time to the next valid or semi-valid event, E[Y], is at least
P

j pj/2Kj. Thus,

E[Y]P (1/2)E[X]. h

The preceding lemma establishes that once the system is at equilibrium (i.e. has reached its stationary

distribution) the expected number of valid events is at least one half of the expected number of valid or

semi-invalid events over any span of time. In other words, the expected number of valid events is at least
as large as the expected number of semi-invalid events for systems at equilibrium. Finally, we have all of the

pieces necessary to prove our primary theorem on the efficiency of the method:

Theorem 4. For any system at equilibrium where at least 3n events have been executed since the last requeuing
operation, the average over all possible system trajectories of the fraction of valid events is at least 1/4.
Proof. Lemma 4 showed that at least one third of valid or fully invalid events are valid. Lemma 6 showed

that the expected valid fraction of valid or semi-invalid events is at least one half. Thus, the expected num-

ber of invalid or semi-invalid events per valid event is at most three, yielding an expected valid fraction of at
least 1/4. h

From the above, it follows directly that the method yields amortized O(m) run time per event for any

system at equilibrium provided at least 3m steps are allowed to run between requeuing events. Together
with our prior results, we can thus show that our method matches the best asymptotic run-time and the

best asymptotic memory usage of any existing methods on equilibrium systems. Bringing both time and

memory complexity simultaneously below O(m2) is a significant milestone in making cell-scale models of

complex assembly systems computationally feasible.

Naturally, we are curious about non-equilibrium systems. The equilibrium assumption is necessary in the

proofs only in bounding the ratio of valid to semi-invalid events. Informally, the assumption is important

because it allows us to show that the delay between when an event is added to the queue and when it reaches

the top does not change its expected contribution to overall waiting time. Systems in which at least a con-
stant fraction of chosen events are unbinding events would yield linear run time even if they are not at equi-

librium. If, however, the system were in a state in which the fraction of binding events approached one with

increasing system size and in which the expected time to the next event were rapidly increasing (by more

than any constant factor in system size) with each succeeding event, then our method could degrade to
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O(m2) run time per event. We can construct artificial examples that function in this domain for a limited

time, but it remains an open question whether such a transient state can continue for a large number of

events (X(m) for example) or whether such behaviors occur at all in any realistic systems.

As an example of a bad case for our method, consider a heterodimer system containing subunits

a1, . . . ,an/2 and b1, . . . ,bn/2 initially unbound. Dimers are formed by binding some ai to some bj. Assume
further that each bj is identical, but that the ai�s have dramatically different binding affinities from one

another such that the time for a1 to bind any bj is much shorter than that for a2 to bind any bj, the time

for a2 to bind any bj is much shorter than that for a3 to bind any bj, and so on. Dissociation could be

assumed to follow the opposite pattern, with the time for an a1:bj dimer to dissociate being much longer

than for an a2:bj dimer, and so on. In such a situation, our method would be expected initially to fill the

front of the queue with a1:bj binding events. The first of these would then be selected, invalidating the

others. The method would then fill the queue with a2:bj binding events behind the remaining invalid

a1:bj events, with the first a2:bj event being reached after the last a1:bj event was removed from the queue.
Proceeding in this fashion, we would have to handle O(n) invalid events for every valid event until all n/2

dimers had been formed.
2.4. Variations on the method

We have been describing here simulations in which we treat assemblies as our basic unit of structure –

events describing interactions between species of assembly – analogous to the treatment of events in the

prior work. Under certain circumstances, it may be reasonable to consider subunit-centered simulations.
That is, we could define a binding event to be an event that joins two subunits, without regard for whether

they are involved in larger assemblies, and store one such event per subunit in the queue when we sample

new subunit events. If assemblies have size O(n) then it might require O(n2) work to compute possible inter-

actions between any two assemblies, potentially yielding O(n2) run time per simulation step in an assembly

centered simulation. A subunit-centered simulation would require only O(n) run time and O(n) memory in

this case. In cases where the cost of computing interactions between assemblies is constant, however, an

assembly centered simulation would require only O(m) time and space, which may be considerably less than

O(n) when assemblies can be large.
3. Empirical analysis

3.1. Implementation of model systems

In order to supplement our theoretical proofs of efficiency, we have developed prototypes of the simu-

lator for two simple hard-coded systems. For the required priority queue, we have generally preferred a
calendar queue [4], which gives an expected O(1) run time per event when waiting times are exponentially

distributed and has well established theory on both analytical [6] and empirical [16] methods for parameter

tuning. For the present work, though, we used instead a less efficient binary heap. This change does not

affect our method�s overall asymptotic performance and eliminates some issues of calendar queue param-

eter tuning that complicate analysis of empirical run times. For these examples, we perform requeuing every

4m steps.

We first implemented a simple homodimer assembly system, described by the reversible reaction

A + AM B. We used mean waiting times in both directions of 1 (in arbitrary units). In order to better
model the situation of a typical non-trivial assembly system, we do not exploit the fact that there are only

two types of assemblies in the simulation, instead treating each monomer or dimer as if it were a unique
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assembly whose event times must be sampled independently from all other assemblies. This allows us to

better stress the dependence of the systems on the number of assemblies by effectively making m = O(n).

For purposes of comparison, we have also implemented a traditional queue-less N-fold way simulation

of the same system, also not exploiting the fact that most assemblies are identical.

We also created a model filament assembly system to explore behavior on a system with unbounded
assembly sizes. Filaments are formed from chains of assembly subunits of arbitrary length. On each sim-

ulation event, either two filaments bind end-to-end or one filament breaks at an arbitrary point along its

length. Each possible binding or breaking event again has waiting time exponentially distributed with

parameter 1. We again did not exploit the fact that filaments of equal length have identical distributions

in order to better model more difficult systems in which we cannot in general equate distinct assemblies even

if they have identical sizes. In this case, though, the number of filaments of any given length is usually small

after the simulation has run for a sufficient time, so that optimization would not be expected to lead to more

than a constant factor improvement over large numbers of steps. We do, however, find that it can signif-
icantly reduce startup costs for simulations initiated from free monomers (data not shown).

Finally, we created a variant of the preceding filament simulations in which unbinding rate is held fixed

but binding rate varies inversely with starting system size. Fixing both rates causes changes in system size to

model different concentrations in a fixed volume of solution. Varying binding rate with system size causes

changes in system size to model a change in volume of a fixed concentration of solution. While the former

model is more useful for establishing the behavior of the method across different systems, the latter is more

useful for showing how the performance of the method on a fixed system scales with the size of the model of

that system. All performance tests were run on desktop computers with 2.80 GHz Pentium processors
running Linux.

3.2. Results

Our empirical validation is intended to establish two points: that our methods are correct in both theory

and implementation and that the critical issue of valid fractions of events is resolved as our theory predicts.

We validate correctness of the implementation using the dimer system by comparing events processed in the

queue-less N-fold way simulation to valid events processed in the queue-based simulation for equal
amounts of simulation time. We compared the methods for systems of size 10 and 100 subunits at time

points 1, 100, 250, 500, and 1000. Run-time was prohibitive for the queue-less method at larger system sizes.

The resulting data are shown in Table 2. The nearly identical results confirm that the implementation of our

queue-based method yields correct waiting times between events.

The central issue in establishing efficiency of our method is showing that the fraction of processed events

that are valid converges on a positive constant for large system sizes. We evaluated these fractions for sys-

tems of 10, 100, 1000, and 5000 subunits at time points 1, 10, 100 and 250. Fig. 6(a) plots valid fraction as a

function of system size at various stages of the program�s run. For any one time point, the valid fraction
rapidly converges to a constant in system size, confirming linear time per time step. The asymptotic valid

fraction is approximately 0.51 for the larger time points, significantly better than our theoretical lower

bound of 0.25. At time t = 1, where the system would be expected not to have reached equilibrium, the valid

fraction is noticeably lower (about 0.45). It is not clear if it is converging to a lower constant or a decreasing

function of n. Valid fractions at t = 10 are nearly indistinguishable from those at t = 100 and t = 250, which

themselves align almost perfectly, suggesting that any transient effects disappear quickly from this system.

Our constant-volume filament-based system allows us to test whether our results on valid fractions hold

in a more complicated system with very different equilibrium behavior. We examined valid fractions at the
same time points and system sizes as for dimer systems. Fig. 6(b) shows valid fractions as functions of sys-

tem size. For the larger time points, we again observe apparent convergence on a constant valid fraction,

apparently also approximately 0.51. There is some variability between these points at smaller system sizes,
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Fig. 6. Valid event fractions as function of system size at time points 1, 10, 100, and 250. (a) Results from the dimer system. (b) Results

from the filament system.

Table 2

Comparison of event counts between our queue-based method and a ‘‘gold standard’’ queue-less N-fold way simulation

Particles Time Valid events: queued Events: non-queued

10 1 9 9

10 100 666 731

10 250 1734 1792

10 500 3549 3583

10 1000 7251 7154

100 1 135 139

100 100 9253 9022

100 250 23,104 22,747

100 500 45,863 45,528

100 1000 91,009 90,587
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suggesting the system is slower to reach equilibrium. At the non-equilibrium t = 1 time point, we again see a

somewhat lower (about 0.44) but possibly asymptotically constant valid fraction, while t = 10 yields

fractions only marginally below t = 100 and t = 250.
The non-equilibrium system allows us to examine practical efficiency for an instance in which our the-

oretical bounds do not apply. Systems with a significant fraction of unbinding events would be expected to

yield linear run-time in any event, so we focused on the most extreme example of a system with low unbind-

ing rate: one in which unbinding events are impossible. Our empirical tests unequivocally support the

hypothesis that v(n) = O(1) for such systems. We simulated each system for incrementally longer time spans

until the fraction of valid events converged or the system became incapable of future events. Only filament

assembly systems were considered, of sizes 100, 250, 500, 1000, and 5000 subunits. Fig. 7 plots valid fraction

as a function of system simulation time. The plot shows apparent convergence to a constant valid fraction
of about 0.37 over the course of those simulation runs. Thus, our system appears to exhibit linear run time

even though it is a non-equilibrium system and therefore is not covered by our proof of efficiency.

Although the current prototype code is not highly optimized and we cannot attach great significance to

exact run times and memory usage, we did perform some additional experiments to establish that true wall-

clock run-time and memory usage reflect the theoretical results. Fig. 8 depicts run times and memory use as

functions of system size for our fixed-concentration filament system run for one million valid events and 50,

100, 200, 400, and 800 monomers. Figs. 8(a) and (b) show results for our queue-based method and the
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queue-less method, respectively, clearly establishing linear wall-clock run time for the queue method in

comparison to the quadratic run time of the queue-less method. The two plots have different y-axis scales

because of the very different run times of the two methods even for modest system sizes. Figs. 8(c) and (d)

show memory usage for the two implementations. Both exhibit linear memory usage in system size,
although with a constant approximately five times larger for the queue-based method. Fig. 9 shows log–
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log plots of run-time and memory usage of the queue method over a broader range of system sizes – 10, 100,

1,000, 10,000, and 100,000 monomers – extending well beyond the feasible range of the queue-less method.

Fig. 9(a) shows clear linear growth in run time across this range of system sizes. Fig. 9(b) is consistent with a

fixed memory cost added to a component proportional to system size. By the largest two system sizes, the

O(m) component is dominant. Together, these plots show that the queue method should scale well across

the feasible range of cell-scale systems, encompassing many that would be intractable for the queue-less

method.
4. Discussion

We have presented a novel method for time- and space-efficient continuous-time simulation of self-

assembly systems that improves on existing methods for an important class of systems. The method syn-

thesizes theoretical contributions from the computer science and chemical engineering literature to tackle

an important biological problem. For the first time, we show how to achieve simultaneous linear run-time
and memory usage for a broad class of self-assembly systems. Our empirical results suggest the method will

be feasible for cell-scale systems with large numbers of discrete assembly types, systems that would not have

been approachable by prior methods requiring either quadratic run time or quadratic memory usage in the

number of distinct species. Our methods are particularly well suited to systems of large or complicated

assemblies, such as virus capsids, in which the numbers of distinct species co-existing at equilibrium could

be on the order of the number of assembly subunits.

There are several open theoretical questions about our approach, particularly concerning the issue of

valid event fractions. Although we show the valid fraction is bounded below by a fixed positive constant
for systems at equilibrium, some important biological systems do not exist at thermodynamic equilibrium.

Our approach could likely be extended to other systems by a more sophisticated argument allowing the

bounding constant to vary depending on individual event times. One might also examine whether there
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are bounds on how long a system can exist in domains for which our method requires super-linear run time

per simulation step.

There are also practical issues in determining how our method can best be applied. It may be that the

systems for which it performs poorly are sufficiently rare or artificial that it can be applied to general sys-

tems with little concern about encountering bad cases. These questions are likely to be resolved only with
extensive experience with the performance on real-world systems. It might also be that other methods could

be found that preserve the memory advantages of our queuing method but achieve efficiency in the domains

where the queuing method performs poorly, either replacing our method or supplementing it in some prob-

lem domains.

While this paper is intended as a theoretical contribution, our primary goal is to address real-world

problems. We plan to scale up to highly complex systems of biological interest, in particular the cellular

cytoskeleton and virus capsids. In order to facilitate our own applied work and to make these tools avail-

able to a broader community, we are presently in the process of implementing a Java-based discrete event
simulator that will implement our methods for a generalized representation of self-assembly systems. We

hope that our theoretical contributions will be of use both to our own applications and to those of other

researchers studying self-assembly dynamics.
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